Skip to content

Quantum Harmonic Oscillator and Ladder Operators

The quantum harmonic oscillator is the single most important solvable system for QFT, because:

  • the free scalar field decomposes (in momentum space) into infinitely many decoupled oscillators, one for each p\mathbf{p},
  • “particle number” in free QFT is literally an oscillator occupation number.

1. Classical oscillator in the form used in QFT

Section titled “1. Classical oscillator in the form used in QFT”

In QFT one often encounters quadratic Lagrangians of the form

L=12ϕ˙212ω2ϕ2,L=\frac12\dot\phi^2-\frac12\omega^2\phi^2,

which is just a harmonic oscillator with coordinate ϕ(t)\phi(t) and frequency ω\omega. (On the scanned page ω\omega is written as mm, anticipating ωp=p2+m2\omega_{\mathbf{p}}=\sqrt{\mathbf{p}^2+m^2} for a relativistic scalar.)

The canonical momentum is

πLϕ˙=ϕ˙.\pi \equiv \frac{\partial L}{\partial \dot\phi} = \dot\phi.

The Hamiltonian is

H=πϕ˙L=12π2+12ω2ϕ2.H=\pi\dot\phi - L = \frac12\pi^2+\frac12\omega^2\phi^2.

Canonical quantization promotes ϕ,π\phi,\pi to operators and imposes the equal-time commutator

[ϕ,π]=i,[ϕ,ϕ]=[π,π]=0.[\phi,\pi]=i, \qquad [\phi,\phi]=[\pi,\pi]=0.

This is the prototype of the QFT equal-time commutator
[ϕ(t,x),π(t,y)]=iδ(3)(xy)[\phi(t,\mathbf{x}),\pi(t,\mathbf{y})]=i\delta^{(3)}(\mathbf{x}-\mathbf{y}).


Define

a12ω(πiωϕ),a12ω(π+iωϕ).a \equiv \frac{1}{\sqrt{2\omega}}\left(\pi - i\omega\,\phi\right), \qquad a^\dagger \equiv \frac{1}{\sqrt{2\omega}}\left(\pi + i\omega\,\phi\right).

3.1 Check the commutator [a,a]=1[a,a^\dagger]=1

Section titled “3.1 Check the commutator [a,a†]=1[a,a^\dagger]=1[a,a†]=1”

Using linearity and [ϕ,π]=i[\phi,\pi]=i,

[a,a]=12ω[πiωϕ, π+iωϕ]=12ω(iω[π,ϕ]iω[ϕ,π]).[a,a^\dagger] = \frac{1}{2\omega} \Bigl[\pi - i\omega\phi,\ \pi + i\omega\phi\Bigr] = \frac{1}{2\omega}\Bigl(i\omega[\pi,\phi] - i\omega[\phi,\pi]\Bigr).

Since [π,ϕ]=[ϕ,π]=i[\pi,\phi]=-[\phi,\pi]=-i,

[a,a]=12ω(iω(i)iω(i))=12ω(ω+ω)=1.[a,a^\dagger] = \frac{1}{2\omega}\Bigl(i\omega(-i) - i\omega(i)\Bigr) = \frac{1}{2\omega}(\omega+\omega)=1.

Start from

H=12π2+12ω2ϕ2.H=\frac12\pi^2+\frac12\omega^2\phi^2.

Invert the ladder-operator definitions:

ϕ=12ω(a+a),π=iω2(aa).\phi = \frac{1}{\sqrt{2\omega}}(a+a^\dagger), \qquad \pi = -i\sqrt{\frac{\omega}{2}}(a-a^\dagger).

Substitute into HH and simplify (a standard algebra exercise). One finds

H=ω(aa+12).H=\omega\left(a^\dagger a+\frac12\right).

The operator

NaaN \equiv a^\dagger a

is the number operator, and the 12ω\frac12\omega term is the zero-point energy.

In field theory this becomes d3p12ωp\int d^3p\,\tfrac12\omega_{\mathbf{p}} (with the appropriate (2π)3(2\pi)^3 measure), which is divergent in the continuum limit and is usually handled by normal ordering or by renormalization (depending on context).


From [a,a]=1[a,a^\dagger]=1 it follows that

[N,a]=a,[N,a]=a.[N,a^\dagger]=a^\dagger, \qquad [N,a]=-a.

Proof (one line):

[N,a]=[aa,a]=a[a,a]=a.[N,a^\dagger]=[a^\dagger a,a^\dagger]=a^\dagger[a,a^\dagger]=a^\dagger.

Similarly for [N,a][N,a].

Let n|n\rangle be an eigenstate of NN:

Nn=nn.N|n\rangle = n|n\rangle.

Then

N(an)=(aN+[N,a])n=ann+an=(n+1)(an),N(a^\dagger|n\rangle) = (a^\dagger N + [N,a^\dagger])|n\rangle = a^\dagger n|n\rangle + a^\dagger|n\rangle = (n+1)(a^\dagger|n\rangle),

so ana^\dagger|n\rangle is proportional to n+1|n+1\rangle.

Similarly,

N(an)=(n1)(an),N(a|n\rangle)=(n-1)(a|n\rangle),

so ann1a|n\rangle\propto |n-1\rangle.

Write

an=αnn+1,an+1=αnn.a^\dagger|n\rangle = \alpha_n |n+1\rangle, \qquad a|n+1\rangle = \alpha_n^* |n\rangle.

Then

naan=αn2.\langle n|a a^\dagger|n\rangle = |\alpha_n|^2.

But aa=aa+1=N+1a a^\dagger = a^\dagger a + 1 = N+1, hence

αn2=n(N+1)n=n+1.|\alpha_n|^2 = \langle n|(N+1)|n\rangle = n+1.

Therefore one can choose phases so that αn=n+1\alpha_n=\sqrt{n+1}, giving the standard formulas

an=n+1n+1,an=nn1.a^\dagger|n\rangle=\sqrt{n+1}\,|n+1\rangle, \qquad a|n\rangle=\sqrt{n}\,|n-1\rangle.

5.2 Existence of a ground state and positivity

Section titled “5.2 Existence of a ground state and positivity”

Repeatedly lowering must eventually stop in a Hilbert space with positive norms. If there is a lowest state 0|0\rangle (“the vacuum”), it must satisfy

a0=0.a|0\rangle=0.

Then N0=0N|0\rangle=0, so eigenvalues of NN are nonnegative integers:

n=0,1,2,n = 0,1,2,\dots

and the energy levels are

En=ω(n+12).E_n = \omega\left(n+\frac12\right).

6. A note on representations: why [a,a]=1[a,a^\dagger]=1 cannot be finite-dimensional

Section titled “6. A note on representations: why [a,a†]=1[a,a^\dagger]=1[a,a†]=1 cannot be finite-dimensional”

For finite matrices, tr(AB)=tr(BA)\mathrm{tr}(AB)=\mathrm{tr}(BA), hence tr([A,B])=0\mathrm{tr}([A,B])=0.

If a,aa,a^\dagger were finite-dimensional matrices, then

tr([a,a])=0.\mathrm{tr}([a,a^\dagger]) = 0.

But [a,a]=1[a,a^\dagger]=\mathbf{1} would imply

tr([a,a])=tr(1)=dim(H)0,\mathrm{tr}([a,a^\dagger])=\mathrm{tr}(\mathbf{1})=\dim(\mathcal{H})\neq 0,

a contradiction.

So the oscillator algebra forces an infinite-dimensional Hilbert space. This is one small hint of why QFT (with infinitely many modes) naturally lives in a very large Hilbert space.


Below is a simple ladder diagram that will later be reinterpreted as “particle number” levels in free QFT.

E n = 0 n = 1 n = 2 n = 3 n = 4 a† a Eₙ = ω (n + 1/2)

8. Preview: from one oscillator to a free quantum field

Section titled “8. Preview: from one oscillator to a free quantum field”

A free relativistic scalar field (Klein–Gordon) decomposes into independent momentum modes. Each p\mathbf{p}-mode behaves like an oscillator of frequency

ωp=p2+m2.\omega_{\mathbf{p}}=\sqrt{\mathbf{p}^2+m^2}.

Schematically (suppressing ordering issues and constants),

Hfreed3p(2π)3ωpapap  +  (zero-point).H_{\text{free}} \sim \int \frac{d^3p}{(2\pi)^3}\, \omega_{\mathbf{p}}\, a^\dagger_{\mathbf{p}}a_{\mathbf{p}} \;+\; \text{(zero-point)}.

This is the precise meaning of the “each p\mathbf{p} is a harmonic oscillator” statement in the scanned notes: QFT begins as an infinite collection of oscillators.

In the next chapters we will construct the field operator ϕ(x)\phi(x), derive the canonical commutators, and compute propagators.


Exercise 1: Recover [a,a]=1[a,a^\dagger]=1

Section titled “Exercise 1: Recover [a,a†]=1[a,a^\dagger]=1[a,a†]=1”

Starting from [ϕ,π]=i[\phi,\pi]=i, derive [a,a]=1[a,a^\dagger]=1 for

a=12ω(πiωϕ),a=12ω(π+iωϕ).a=\frac{1}{\sqrt{2\omega}}(\pi-i\omega\phi), \quad a^\dagger=\frac{1}{\sqrt{2\omega}}(\pi+i\omega\phi).
Solution

Compute directly:

[a,a]=12ω[πiωϕ, π+iωϕ]=12ω(iω[π,ϕ]iω[ϕ,π]).[a,a^\dagger] = \frac{1}{2\omega}[\pi-i\omega\phi,\ \pi+i\omega\phi] = \frac{1}{2\omega}(i\omega[\pi,\phi]-i\omega[\phi,\pi]).

Use [ϕ,π]=i[π,ϕ]=i[\phi,\pi]=i\Rightarrow[\pi,\phi]=-i:

[a,a]=12ω(iω(i)iω(i))=12ω(ω+ω)=1.[a,a^\dagger]=\frac{1}{2\omega}\bigl(i\omega(-i)-i\omega(i)\bigr)=\frac{1}{2\omega}(\omega+\omega)=1.

Exercise 2: Show H=ω(N+12)H=\omega(N+\tfrac12)

Section titled “Exercise 2: Show H=ω(N+12)H=\omega(N+\tfrac12)H=ω(N+21​)”

Using

ϕ=12ω(a+a),π=iω2(aa),\phi = \frac{1}{\sqrt{2\omega}}(a+a^\dagger), \qquad \pi = -i\sqrt{\frac{\omega}{2}}(a-a^\dagger),

show that

H=12π2+12ω2ϕ2=ω(aa+12).H=\frac12\pi^2+\frac12\omega^2\phi^2 = \omega\left(a^\dagger a+\frac12\right).
Solution

Insert the expressions:

  1. Compute ω2ϕ2\omega^2\phi^2:
ω2ϕ2=ω2(a+a)22ω=ω2(a+a)2.\omega^2\phi^2 = \omega^2\frac{(a+a^\dagger)^2}{2\omega} = \frac{\omega}{2}(a+a^\dagger)^2.
  1. Compute π2\pi^2:
π2=(iω2(aa))2=ω2(aa)2.\pi^2 = \left(-i\sqrt{\frac{\omega}{2}}(a-a^\dagger)\right)^2 = -\frac{\omega}{2}(a-a^\dagger)^2.

Thus

H=12π2+12ω2ϕ2=ω4(aa)2+ω4(a+a)2.H=\frac12\pi^2+\frac12\omega^2\phi^2 = -\frac{\omega}{4}(a-a^\dagger)^2+\frac{\omega}{4}(a+a^\dagger)^2.

Expand both squares and subtract. The mixed terms add:

(a+a)2(aa)2=4aa+2[a,a].(a+a^\dagger)^2-(a-a^\dagger)^2 = 4a^\dagger a + 2[a,a^\dagger].

Using [a,a]=1[a,a^\dagger]=1:

H=ω4(4aa+2)=ω(aa+12).H=\frac{\omega}{4}\Bigl(4a^\dagger a+2\Bigr)=\omega\left(a^\dagger a+\frac12\right).

Exercise 3: Compute matrix elements and normalization

Section titled “Exercise 3: Compute matrix elements and normalization”

Assume Nn=nnN|n\rangle=n|n\rangle and define n|n\rangle such that nn=1\langle n|n\rangle=1. Show:

an=nn1,an=n+1n+1.a|n\rangle=\sqrt{n}\,|n-1\rangle, \qquad a^\dagger|n\rangle=\sqrt{n+1}\,|n+1\rangle.
Solution

From [N,a]=a[N,a^\dagger]=a^\dagger one finds ann+1a^\dagger|n\rangle\propto|n+1\rangle. Write an=αnn+1a^\dagger|n\rangle=\alpha_n|n+1\rangle. Then

αn2=naan=n(N+1)n=n+1.|\alpha_n|^2 = \langle n|a a^\dagger|n\rangle = \langle n|(N+1)|n\rangle = n+1.

Choose phases so αn=n+1\alpha_n=\sqrt{n+1}. Taking Hermitian conjugates gives the lowering formula.

Exercise 4: No finite-dimensional representation (trace argument)

Section titled “Exercise 4: No finite-dimensional representation (trace argument)”

Show that no finite-dimensional matrices a,aa,a^\dagger can satisfy [a,a]=1[a,a^\dagger]=\mathbf{1}.

Solution

For finite-dimensional matrices, tr(AB)=tr(BA)\mathrm{tr}(AB)=\mathrm{tr}(BA), so tr([A,B])=0\mathrm{tr}([A,B])=0. If [a,a]=1[a,a^\dagger]=\mathbf{1}, then

0=tr([a,a])=tr(1)=dim(H),0=\mathrm{tr}([a,a^\dagger])=\mathrm{tr}(\mathbf{1})=\dim(\mathcal{H}),

a contradiction. Therefore the oscillator Hilbert space must be infinite-dimensional.

Exercise 5: Fluctuations in n|n\rangle

Section titled “Exercise 5: Fluctuations in ∣n⟩|n\rangle∣n⟩”

Show that in the number eigenstate n|n\rangle,

nϕn=0,nϕ2n=n+12ω.\langle n|\phi|n\rangle=0, \qquad \langle n|\phi^2|n\rangle=\frac{n+\tfrac12}{\omega}.
Solution

Use ϕ=12ω(a+a)\phi=\frac{1}{\sqrt{2\omega}}(a+a^\dagger). Since ann1a|n\rangle\propto|n-1\rangle and ann+1a^\dagger|n\rangle\propto|n+1\rangle, orthonormality implies nan=nan=0\langle n|a|n\rangle=\langle n|a^\dagger|n\rangle=0, hence ϕ=0\langle\phi\rangle=0.

For ϕ2\phi^2:

ϕ2=12ω(a2+a2+aa+aa).\phi^2=\frac{1}{2\omega}(a^2+a^{\dagger 2}+aa^\dagger+a^\dagger a).

The terms a2a^2 and a2a^{\dagger 2} change nn by ±2\pm2, so their expectation values vanish in n|n\rangle. Using aa=N+1aa^\dagger=N+1 and aa=Na^\dagger a=N:

nϕ2n=12ωn(N+1+N)n=12ω(2n+1)=n+12ω.\langle n|\phi^2|n\rangle=\frac{1}{2\omega}\langle n|(N+1+N)|n\rangle=\frac{1}{2\omega}(2n+1)=\frac{n+\tfrac12}{\omega}.